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ins'tabilitiesNatural which are created in a laminar
boundary layer consist of intermittent wave trains. The
spectral analysis of these fluctuations makes it possible
to localize them in terms of frequency and to isolate
their spectrum of amplitude modulation. The variation .in terms of abscissa value and ordinate value of these .
instabilities is compared with the results derived from -.-
the solution of the Orr-Sommerfeld equat1on.
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STUDY OF THE DEVELOPMENT OF NATURAL
INSTABILITIES IN A LAMINAR BOUNDARY
LAYER IN INCOMPRESSIBLE FLOW

Serge Burnel and Pierre Gougat**

I. The first theoretical study on the development /1251"

of two-dimensional perturbations in a laminar boundary layer

was performed by Tollmien and Schlichting. These authors

considered a perturbation to the velocity components u'(x,y,t)

and v'(x,y,t) represented by the stream function

_l'(x,y,t)=O_y) e:_e _ .......'_ in which -_i is the space

amplification coefficient, _ is the wave number, _ is ther

time pulsation, _/_,_ C, is the phase velocity, where

Re ,=

By introducing these values in the system of Navier-

Stokes equations, and after eliminating pressure terms, we

obtain the Orr-Sommerfeld equation. The solution of this

equation leads to curves in the plane (%Re_,) of curves

of equal amplification. These curves show that the L

instabilities can only develop above a certain critical

Reynolds number. The verifications of the stability theory

were performed by Schubauer and Skramstad, who injected an

harmonic velocity perturbation using a vibrating ribbon. They

measured the development of these perturbations as a function

of Reynolds number.

The modern calculation techniques allowed Jordinson

[I], Obremski and Morkovin [2] to take into account additional

factors such as, for example, the longitudinal pressure

gradient and the development of the average velocity profile.

Numbers in margin indicate foreign pagination

**Meeting of March 27, 1972. I



The experimental work of Rosse-Barnes-Burn [3] who also used

the technique of the vibrating ribbon resulted in the distri-

bution of the spectral power density as a function of y/_.

Also amplification coefficients were measured.

2. The study of natural instabilities is carried out with

, a flat plate having an elliptical leading edge, which is

placed in a Eiffel type wind tunnel where the velocity Ue can

vary between 4 and 25 m/s [4].

The signals produced by the anemometric chain are processed

by a frequency analyzer in real time, which allows one to

obtain the frequency range of velocity fluctuations and to

measure their spectral power density. /1252

In the laminar boundary layer, and without any excitation,

there is a Reynolds number above which natural instabilities

appear in the instantaneous velocity signal, which is translated

into the longitudinal evolution of various spectra due to the

existence of a characteristic instability frequency range

(Figure I). For a Reynolds number of Re_ = i000 , the centrali

frequency of this range is i000 Hz, which corresponds to the
Q

value determined by Tollmien and Schlichting. This central

frequency varies with the abscissa value according to the

theory. A visualization of the instantaneous signal after

filtering of low frequencies shows that, on the one hand, the

instabilities have a relatively pure harmonic character:

the frequency corresponds to the central frequency, but the

amplitude varies as a function of time. On the other hand,

the frequency range between 500 and 1500 Hz does not exist in

the instantaneous velocity signal.

This variation in the amplitude of the instability as a

function of time motivated a study about the amplitude

2
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modulation.

If a sinusoid with the pure frequency f2 is modulated in

amplitude by a sinusoid of frequency fl' the spectrum will

include lines at frequencies f2 and f2 _ fl"

A double alternating rectification of this signal gives

• a spectrum which includes lines at _, 2_,2_ _,_, __, ....

Alternating double rectification makes it possible to

isolate the modulation frequency. This same procedure applied

to the physical signal Nhows that the spectrum has a low

frequency zone corresponding to an amplitude modulation

spectrum (Figure 2).

The stability theory predicts the existence of a unstable

frequency range for a given Reynolds number. On the other

hand, the natural instabilities occur at a fixed frequency /1253

and are modulated in amplitude by a continuous spectrum of

low frequencies.
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3. In order to characterize the mechanism for the

development of the instabilities and to define the amplification

coefficient, we measured both the ordinate values and the

abscissa values of the variation of the spectral power density

, of the central frequency.

, - The evolution of this power level in a given section

passes through a maximum for an ordinate value of y/_0.35,

which corresponds to an average speed of U/U = 0.4 which ise

close to the phase velocity of the instabilities. This result

agrees well with the theoretical and experimental works of

Jordinson, Ross, Barnes, Burn [I, 3].

- The variation of this level as a function of the

abscissa for a reduced ordinate value of y/6 = 0.35 thus

translates the space amplification of the instabilities

(Figure 3). The slope of these curves represents the amplifi_

cation factor. For two velocities U e = 16 and 25 m/s_ and for

the same Reynolds nu@ber Re_\ = 870, we calculated the non_4

-U

dimensionalamplificationcoefficients (_i_i/Re_,)which

came out to be 2.1.10-5 and 2.2.10-5 respectively.
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The difference between the experimental and theoretical

values can be obtained from nomograms of Obremski and

Morkovin. On these nomograms, the external velocity gradient

is characterized by the value B o_ the Falkner and Skan

parameter. Figure 4 shows for a Reynolds number of Re_l 870
the theoretical variation of (_i_i/R_.) as a function of the

parameter _. On the same curve, we have plotted the experi-

4 mental values of the amplification coefficient, taking into

account the over-velocity induced by the leading edge, which

at the Reynolds number considered corresponds to a value of

= -0.07. /1254

4. We can see that there is a fundamental difference

between the structure of the natural instabilities and that

taken into account in the theoretical calculations: for

Tollmien and Schlichting, the perturbation consists of a

progressive wave. In our case, we are dealing with periodic

puffs which have an intermittent character. On the other

hand, the amplification coefficients measured are very close

to those predicted by theory.
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